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Artificial viscosity [Q] has been used for over 40 years1 to simulate numerically the propaga-
tion of waves in a discretized continuum. It is composed typically of terms that are quadratic and
linear in the gradient of the particle velocity, and “switches” (numerical representations of physi-
cal criteria) for turning the terms on and off. The quadratic term is active only in the region of a
sharp discontinuity, e.g., a shock, where the velocity gradient is large, and spreads (smooths) the
discontinuity over a few computational zones, or a fixed length. The linear term damps oscilla-
tions resulting from computed timesteps that are Courant stable, but mismatched to the mesh size.
The linear @ is active throughout the mesh and consequently can be very dissipative. That a
timestep mismatch gives rise to oscillations, for which a Q is required can be demonstrated by
noting that elastic uniaxial strain waves (e.g. square waves!) can be propagated without (, attenu-
ation, or dispersion, through a uniform (one and only one fundamental timestep) mesh, if the
period of the pulse is an integral number of timesteps. A small change in the period of the pulse
creates oscillations, which must be damped. In general, waves are propagated numerically
through different materials and nonuniform meshes with various boundary conditions, resulting in
a different timestep in each computational zone, so that a linear Q is necessary.

We are interested in simulating the propagation of elastic waves, for which only the linear Q
is important. The dispersion and attenuation due to the linear Q can dominate the character of the
wave propagation.2 Consequently, an analytic solution is necessary to assess the quality of vari-
ous Q-formulations. Blake? obtained an analytic solution for the propagation of a spherical wave
driven by an exponentially decaying pressure applied to the inside surface of a hollow elastic
sphere. This is an ideal problem for comparing different formulations of the linear Q. Its physical
characteristics are quite similar to waves generated by underground explosions; thus, the Blake
solution is relevant to many real applications.

We will show that Blake’s analytic solution can be approximated numerically very well,
using a standard tensor linear-Q. The key improvement we make is a new formulation of the
switch that turns the Q on and off, which is in contrast to most of the previous work which has
focussed on altering only the functional form of the artificial viscosity. Our improvement requires
little additional computational overhead beyond incorporating the tensor linear Q, and thus, is
very fast computationally.

The linear Q used in many hydrocodes may be expressed as

1
Q;; = anv;j = an [v’i'j +§vk'k8ij], (1)

where v, ; are components of the velocity gradient (v, , = Vev), 1 is a function of the local
sound speed, the zone size, and the density, and a is a user-specified multiplicative constant. The
right side of Eq. (1) is a decomposition of the viscosity into deviatoric (primed) and scalar compo-
nents (8ij is the Kronecker delta). The deviatoric term is ignored often, so that only a scalar Q
remains. Although a scalar @ is fine for hydrodynamic waves, the tensor form is more appropriate
for damping oscillations in elastic waves, which can have large deviatoric components.
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The typical switch used with Eq. (1)is Q;; onif Vev <0, i.e., if the material is compressing
volumetrically. Our “modified” formulation of the linear Q, which we denote as Q™, is obtained
by specifying a new switching function for Eq. (1). We write

Q:? = aT\Vi’j [f1 +f2] ’ (2a)

fy=max [sgn [-6,v; ;] ,0],and (2b)
_ 22

f, =max [sgn [87 (-Gijvi,j) :| , 0} , (20)

where o;; are the components of the stress tensor (compressive stresses are negative), and
sgn(x)=1if x >0, -1if x <0, or 0 if x = 0. Thus, f; and f, equal O or 1. The scalar 6;v; jis the
power per unit volume, so that f; and f, have simple physical interpretations. Figure 1 shows
schematically the hypothetical response of a computational mesh to the passage of a uniaxial
strain wave. Particle velocity is plotted as a function of distance. The dashed line is an idealized
solution for a propagating step wave (compressive or tensile). The solid line is the oscillatory
response that would be expected from a numerical solution without Q. The figure also shows the
regions of the wavefront in which f; and f, would be active initially. f; is active for compressed
regions that are expanding, or for expanded regions that are compressing. fj is activated initially
only after the peak of the wave, consequently, it does not damp the initial overshoot. f, damps the
overshoot, because it is constructed from the second derivative of the power per unit volume, so
that it “anticipates” the overshoot. The figure shows that f; is activated initially at the midpoint of
the wavefront. Although f; is defined by a temporal derivative, we have used the approximation

LN ci where ¢ ~ ¢, to compare and contrast in the same figure the regions of initial activity

ot dx’
of fjandf;.

Equations (2) were added to DYNA2D? which is a 2D Lagrangian hydrocode. The Blake
problem was modelled using a spherical 1D mesh with 100 radial 0.2m thick zones. The driving
pressure, P, on the inner surface, which was at a radius of 10m, was P(GPa) = 0.1 exp[-1000¢],
where ¢ is the time in seconds. The density, bulk modulus, and shear modulus of the elastic mate-
rial were 2000kg/m3, 36(GPa), and 12.5(GPa). The resulting longitudinal sound speed, c;, is
5.13n¥ms. Figures 2—4 show the velocity profile at 3ms for the analytic solution (dashed line) and
three formulations of the linear Q (solid line) listed in Table I. For each of the three cases, the
value of the multiplicative coefficient, a, was chosen so that the calculated peak velocity would
equal the analytic peak velocity.

The scalar and tensor viscosities shown in Figs. 2 and 3 create many oscillations behind the
peak. The numerical results shown in Figs. 2 and 3 are improved if the Q is always on, instead of
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on only in compression. However, leaving the Q always on introduces too much dissipation, for
most realistic problems. This is why the compression only condition has become the “industry
standard.” Figure 4 shows that the solution using the modified Q is nearly free of oscillations and
more closely approximates the analytic solution than the other cases. In addition, we examined
several other test problems, other forms of Q, and other switches. Q™ produced results that
equalled or exceeded those results in every case.

The purpose of this note was to demonstrate that the accuracy of numerical simulations of
wave propagation that use linear artificial viscosity can be improved significantly by altering the
traditional activation criteria for the viscosity. Our activation criteria are based on the power per
unit volume. Other criteria that yield more accurate results may certainly exist.

Figure # Viscosity Type Activity a
2 Eq. (1): scalar [v] J= 0] compression only 0.015
3 Eq. (1): tensor compression only 0.013
4 Eq. (2): modified f1 and f; [Eqgs. (2b,c)] 0.032

Table I: Parameters for the numerical simulations
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Figure 1- Schematic response of a computational mesh to the passage of a uniaxial strain wave.
The particle velocity is plotted as a function of distance, for the hypothetical numeric (solid line)
and exact (dashed line) solutions. The regions are shown where f; and f; are active initially.
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Figure 2— Velocity as a function of distance at 3ms for the analytic (dashed) and the numeric (solid)
solutions. The multiplicative constant, a, is 0.015.
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Figure 3— Velocity as a function of distance at 3ms for the analytic (dashed) and the numeric (solid)
solutions. The multiplicative constant, a, is 0.013.
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Figure 4- Velocity as a function of distance at 3ms for the analytic (dashed) and the numeric (solid)
solutions. The muldplicative constant, g, is 0.032.



